ELASTIC-WAVE DIFFRACTION BY A FINITE
CRACK UNDER ANTIPLANE STRAIN CONDITIONS

P. A. Martynyuk and E. N. Sher UDC 534.26

The problem of elastic-wave interaction with a crack has been examined in [1, 2] for normal wave
incidence in the case of plane or antiplane strain. The solution of the problem about arbitrary wave inci-
dence in the plane strain case is described in [3].

The diffraction of a step stress wave by a finite rectiline ar crack at an aribtrary angle of incidence
in the case of antiplane strain is considered in Sec. 1 of this paper. The mathematical de scription of the
motion of an elastic medium is simpler for antiplane than for plane strain. This permits obtaining simpler
and more complete solutions.

The diffraction by a crack for normal wave incidence under the condition that the crack reaches the
critical state at some time and starts to develop under the effe ct of the incident wave is considered in Sec.
2 in the same formulation.

1. Oblique Incidence of a Stress Wave

on a Fixed Crack.

An infinite elastic solid containing an isolated crack of length 21 is considered. The strain state is
assumed antiplanar. The stress-tensor components differ from zero,

Ty = MOWNOZ, T,y = WowW/oz 1.n

where w=w(x, z, t) is the single nonzero component of the displacement vector. Let us introduce the dimen-
sionless variables
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where c is the transverse wave velocity, and y is the shear modulus. The Equations (1.1) and the equation
of motion for the dimensionless quantities are written as (for simplicity in the writing the primes are omit-
ted)
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Let a shear wave in the form of a step with amplitude p, be incident on the crack from the left, and
let it be tangent to the left edge of the crack at the point x=—1 at the time t=0. The anglebetweenthedirec-
tion of the wave-front normal and the positive direction of the z axis will be denoted by ¢. The problem
about the incidence of such a wave on a crack is equivalent to the problem about a free crack on whoseedges
the following loading appears at the initial time:

p =z, t) = F1y, = +pocos ¢ H [t — (z + 1) sin ¢l (1.2)
1, £>0
H(c)z{o, £<0

The upper sign in the equality refers to the upper edge of the slit. The crack length remains constant
the whole time.
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te/t The form presented for p(x, t) means that the load is propagated
at the intensity + p, cos ¢ along the crack length from the edge x=—1
at the constant velocity (sin (,o)"1 until it reaches the opposite edge of
the crack. After this, the load remains constant. The solution of the
diffraction problem can be obtained by adding the solution of the prob-
lem of a free crack subjected to the load (1.2) at the initial instant to
the solution describing the motion of an incident wave in a continuous

infinite elastic body. For such a wave
w(z, z, t) = —poH [t — (1 + z)sing — 2z cos @]

In such a wave the stress-tensor component Tyz Will be

Ty = Pocos ¢ H [t — (1 + ) sin gl

on the crack z=0, ~1< x<+1.

In combination with the value from (1.2), this yields the condi~
tion Tyz =0, on the crack, which should indeed be satisfied in the dif-

.7)
%” Y fraction problem. The problem about the load (1.2) is a particular
17 Ao case of the problem solved in [4]. Represented in Fig. 1 is the kine-
/2% = matics of diverse wave fronts which originate because of wave reflec-
2 tion from the crack edges. The solution is sought in the zones denoted
iy by the numbers 0, I, II.
/ e/ According to [4], the expressions for Tyz in zone 0 are for z=0
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Y r where £, n are characteristic variables: Ty, Ty are the values of Ty
z ‘ for the right and left ends of the crack, respectively. Evaluating the
Fig. 3 integrals in (1.3), we obtain
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Fig. 4

As is seen from (1.3), {1.4), Tj, and Ty, have singularities of or-
der (Ax)"1/2, where Ax«1, as n, tends to 7, o to £y). In the limit
case we can write
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Ky () = % 2128+ V2 (1 — 2sin@)JcosB
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Here Kjj and K, are infensity factors for the singularities at the heads of the cracks approachedfrom
outside. The quantities Kj, and K,j are monotonically increasing functions of their arguments, where up to
the time of arrival of the first reflected wave from the opposite end of the crack, i.e., for Kjg at £ =1/v2,
and for Ky atn = (1+2 sin ¢)/VZ, their values agree and are equal to (py/7) 23/2sin 28. Hence, itis seen that
as ¢ varies between 0 and 7 /2, the maximum value of Ky and K, varies between (po/7) 2%/2 and 0. For
normal wave incidence on the crack, i.e., for ¢ =0, 7, agrees with Ty,

The stress-intensity coefficients in zones I and Il are computed from the formulas
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The first subscript in these expressions indicates the end of the crack. Thus, 1 corresponds to the
right end x=+1, and 2 to the left end x=—1; the second subscript denotes the zone or the quantity of arrived
reflected waves. The expressions (1.7) were evaluated numerically. The results of a numerical computa~
tion of the time change in the ratio between the stress-intensity factor and its static valueare presented in
Figs. 2 and 3. The curves in Fig, 2 correspond to the left end x=—1, and in Fig. 3 to the right end x=1.
The curves denoted by the numbers 1, 2, 3, and 4 correspond to the values ¢ =0, 7/8, 7 /4, T /3, respectively.
It is seen from these graphs that the stress-intensity factors, referred to their static value, first rise to
1.27, then flucuate and tend to one. This agrees with the solutions in [1-3]. Shown for comparison in Fig, 2
by dashes is the solution for the normally incident wave taken from [2]. The difference from the curve 1
corresponding to normal incidence can be explained by the error in the approximate calculations used to
dbtain the solution in {1].

From the fracture viewpoint, both ends of the crack are equally dangerous for step-type waves. The
maximal stresses originate earlier at the far end of the crack (x=1), therefore, fracture can indeed start
there.

2. Diffraction by a Developing Crack

If the stresses which appear during wave diffraction by a crack exceed the critical value, then the
crack starts to grow. The law of motion of the crack end is determined by the equation [4]

. (r—8aTY) _ n2hg (2.1)
ERRCES ORI e

Here T is the energy lost irreversibly as the end of the crack advances per unit length; K is the stress-
intensity factor at the tip of the crack, which is determined by formulas analogous to those presented in Sec.
1 for a fixed crack.
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te/l y / It is henceforth assumed that T =const. The case of normal wave
Y / incidence on a crack is considered. The motion of the crack starts at the
J /g . time t=t, at which the stress intensity reaches its critical value and t%=
TT2/4pst. By virtue of symmetry, the consideration can be limited to the
motion of one end of the crack. The law of right-end motion is written as

20 3 C(t) =1 4 ¢+ [/2 — 1—2 arc g t / £,] £, @.2)

20

zfi which has been found in [4] for a semiinfinite crack. This law is valid for
w8 34 finite cracks even to the time of wave arrival from its opposite end. The
Fig. 5 magnitude of this time t; can be determined,

b, = totg [1/ty + w/d — 1/,] 2.3)

g

For ty=4/@+7) this expression becomes infinite, i.e., for t054/ 2+
] 7) the wave from the left end of the crack cannot reach the right end. In

1, this case, the law (2.2) is satisfied all the time that the stress in the inci-
7 dent wave is held at the initial level py. If ty> 4/@2+7), then for t> tytan [1/
ty+7/4—1/,] the influence of the left end of the crack starts to be felt. In-
w5 3T vestigating the dependence of the crack acceleration on ty, it can be estab-
lished that for t;<1.71 the motion of the crack tip continues to be acceler-
ated after the first diffraction, but for ty>1.71 it starts to slow down and
can even cease.

ba
o

Fig. 6

Presented in Fig. 4 are graphs of the time change in crack-development rate for t;=1.0, 1.5, 1.8
(curves 1, 2, and 3, respectively), obtained by numerical integration of (2.1). The law of time variation of
the stress-intensity factor for the presented values of t; is shown in Fig. 4 by curves numbered 4, 5, and 6.
The stress-intensity factor K is referred to its static value K¢ =pyv1/2, where 21 is the initial length of the
crack. The dashed line in this graph corresponds to the case of a fixed crack. The trajectories of crack
motion fort;=1.0, 1.5, 1.8 are shown in Fig. 5 by the curves 1, 2, and 3. The straight line in Fig. 5 is the
trajectory of a wave emanating from the left end of the crack,

Let us present some estimates of the influence of the wave duration on the finite size of the crack.
Let us assume that a rectangular wave of duration Tis normally incident on the crack. The final size of the
crack is determined by the parameters t, and 7 in this case.

If t;> 2, which means that the stress-intensity factor does not reach its critical value, then the crack
does not generally move from its place. Similarly for 7 <t,. These rest domains are shown by dashes in
the t,7 plane in Fig. 6.* The line in Fig. 6 bounds the domain D of the states t,7 for which the stopping of
the crack will occur before the first diffraction. The law of crack motion for this domain after the load has
been removed is described for t=7 by the equation

e A D e S (A A S (24)

Stopping of the crack occurs at the time tp= (T +ty)2/4t,. The increment in the crack length after re-
moval of the load at t=7 until the time of stopping equals

e i T T T2 — to?
Az = e (amctg—0 )

The equation of the boundary curve in Fig. 6 is represented as
(4 -+ 7y ty, — 2%, — 124 (1% — 3¢,?) (are tgr/t,— n/h) = 0

The solution has not been obtained successfully in final form outside the domain mentioned. It can
only be noted that for large 7 the final size of the crack will be on the order of T, since the limiting velocity
of the crack equals one.

The assumption of the constancy of T is essential for the results obtained. In some experimental re-
searches on the normal tension of optically active polymers [5] it was detected that T grows as the crack
grows. As a result, it turns out that the stress-intensity factor is also a growing function of the time, and
the limiting velocity of crack propagation is considerably less than the theoretical limit, the Rayleigh value.

* As in Russian original. The dashes do not appear in Fig. 6 — Publisher.
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